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ABSTRACT

This thesis explores the possibility and feasibility of improving existing satel-

lite measurements of sea surface temperature (SST) by the incorporation of high-

frequency (HF) radar-derived surface current data. Water parcels tagged with SST

are advected using particle trajectories calculated by integrating surface current veloc-

ity data. The SST of these advected water parcels are compared to SST measurements

at the final times and locations of the advected water parcels. Different methods of

generating surface currents from HF radar measurements are also examined. The

Totals current method is a local fitting method which generates surface current mea-

surements by solving a least-squares equation fitting multiple measurements from

different radar sites. The Open-boundary Modal Analysis (OMA) method is a global

method which fits a series of eigenfunction modes to available radial measurements.

These modes are generated by solving two Laplacian eigenvalue problems on the do-

main with Dirichlet and Neumann boundary conditions, and adding a set of boundary

modes to account for flow across open boundaries. Any current field in the domain

can be described using a combination of these modes. The two methods are compared

for accuracy against an analytic solution to the linear Stommel problem.
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I. BACKGROUND

A. REMOTE SENSING

Remote sensing is the measurement of a property of an object by a sensor not

in direct contact with the object being measured. Remote sensing techniques extend

important tools for scientists measuring the Earth’s environment. Many established

measurement techniques have been adapted to fit on remote sensing platforms, in-

cluding satellites, fixed land-based platforms, Unmanned Aerial Vehicles (UAVs), Au-

tonomous Underwater Vehicles (AUVs), or the underside of manned aircraft. These

remote sensing techniques offer vast improvements over traditional measurement and

sampling techniques in the possible spatial domain of measurement and cost effec-

tiveness of measurement. The National Oceanic and Atmospheric Administration

(NOAA) has launched numerous environmental satellites with the goal of providing

remote sensing of the Earth and its atmosphere.

These satellites hold multiple sensors onboard, each designed to measure differ-

ent environmental parameters. Many of the sensors designed to take a measurement

of the earth’s surface cannot do so when clouds block the sensor’s view of the earth’s

surface. Passive radiative sensors, such as the Advanced Very High Resolution Ra-

diometer (AVHRR), are particularly prone to this problem. The AVHRR sensor

provides a measurement of sea surface temperature (SST) from onboard NOAA’s

Polar Operational Environmental Satellites (POES). Cloudiness presents significant

problems in geographical areas with persisting cloud cover or fog banks, such as

California’s central and northern coasts. The measurement ability of satellites in

the presence of clouds might be improved by the additional information provided by

measurements that are not affected by cloud presence.
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B. CLOUDINESS ON THE CENTRAL CALIFORNIA COAST

To illustrate just how bad the cloud problem can be in the central and north-

ern California coast, statistics were calculated on the region covered by the Califor-

nia Ocean Currents Monitoring Program (COCMP) High Frequency Radars (here-

after called the CENC region). Individual satellite pass data from the NOAA POES

AVHRR sensor were downloaded (courtesy of the NOAA CoastWatch, West Coast

Regional Node) and masked to exclude any SST pixels not within the CENC region.

The percentage of cloudy pixels within the region was calculated for each satellite

pass.
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Figure 1. Cloudiness on the central California coast (CENC region). a. Normal-
ized histogram of cloudiness percentage for individual satellite passes. b. Average
cloudiness of individual satellite passes as a function of month.
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A total of 1,966 satellite images were analyzed from Jan 1, 2006 to August

10, 2007. Figure 1a shows a histogram (normalized by the total number of satellite

images) of the cloudiness percentage for all the satellite images as well as average

cloudiness as a function of month. The histogram is skewed to the far right, indicating

that the majority of SST images within the CENC domain have vast amounts of their

data destroyed by clouds. Day and night satellite images were separated in Figure

1b due to the different cloudmasking used in the SST processing. The nighttime

cloudmasking algorithm only uses infrared bands, while the daytime cloudmasking

algorithm utilizes both visible and infrared bands. Mean cloudiness per image is

81.65% for the year, with a maximum occurring in August for both day and night

images. Upwelling of deeper, colder ocean water caused by seasonal winds often reach

a peak in August. The colder water close to shore provides conditions favorable for

fog bank formation.

C. INCLUSION OF CURRENT DATA IN SST MODEL

As part of the California Ocean Currents Monitoring Program (COCMP),

multiple land-based high-frequency (HF) radar sites have been installed along the

California coast. These sites form a sensor network designed to provide a continuous

measurement (in space and time) of coastal surface ocean currents. The presence of

clouds do not affect the radar’s ability to measure ocean currents. We hypothesize

that the inclusion of surface ocean current data will improve existing satellite based

SST products whose measurements are hampered by the presence of clouds and fog

banks.

The surface current velocity field contains information relevant to the SST

field. If, for example, the present SST field is unknown due to clouds, the SST field

might be predicted by using a past SST field obtained from some satellite pass in the

past when the sky was clear and the surface current velocity data between the time

of the past measurement and the current time. For example, if there was a strong

3



northward current running along the coast, we might expect the surface temperature

at a given location to look like the past surface temperature at some point to the

south. Figure 2 shows an example of the SST and current fields for Monterey Bay.

Notice the stronger westward currents off Point Pinos (at the southern boundary of

Monterey Bay) are advecting a cold-water filament into the warmer offshore water

mass.

Figure 2. SST (in degrees Celsius) and current field in the Monterey Bay on 19:10
GMT, January 9, 2007.

D. THESIS OBJECTIVES

The main objective of this thesis is to determine if the inclusion of ocean

surface current data increases the ability to estimate sea surface temperature in the

4



presence of clouds. This hypothesis is tested by building a model of SST that advects,

or moves, parcels of surface water according to the surface currents measured by the

radars. The tracks of these parcels of surface water are called particle trajectories.

Particle trajectories are calculated according to the ordinary differential equation,

dx

dt
= u(t,x(t)), (I.1)

where x(t) is the position vector of the particle composed of latitude and longitude

components, and u(t,x(t)) is the velocity vector composed of latitudinal and longi-

tudinal velocities.

In the particle trajectories, the initial time and location of a particle are called

the departure time and departure point, and the final time and location of a particle

are called the arrival time and arrival point. In the model, SST at the arrival point at

the arrival time is approximated by the SST of a water parcel which has been advected

from the departure point at the departure time. To validate the model, SST at the

arrival points and arrival times are compared against SST at the departure points

and departure times. Note that, in testing the model, the departure and arrival times

correspond to the times of satellite passes to allow for new measurements of the SST

field. Mathematically, the comparison is expressed as:

D = T (t0, x0, y0)− T (t1, x1, y1) (I.2)

where T , the surface temperature, is a function of time and location (in latitude/longitude

coordinates). In this comparison equation, the parcel of water at the departure point

(x0, y0) at the departure time t0 is advected by the surface currents to the arrival

point (x1, y1) at the arrival time t1. If the advected water parcels temperature is a

good prediction of the temperature at the new time and location, then this difference

equation should be close to zero.

As a secondary thesis objective, the different methods of calculating ocean

currents and particle trajectories are also examined. The two primary methods of

5



calculating surface currents are compared to each other and to an analytic solution

to the Stommel ocean model (discussed in chapter III, section C).

This thesis is divided into four chapters. Chapter I presents a brief background

on the thesis investigation. Chapter II discusses the theory behind the thesis material.

Chapter III discusses the methods used in calculations and model validation. Chapter

IV discusses the results of the model validation and suggests areas of further research.

6



II. THEORY

A. SST MODEL

As mentioned above, it is proposed that a good predictor of SST is a model

that includes both past data about the SST as well as data about the surface current

field. In reality, the surface SST field is much more complicated and will depend

on additional factors such as surface warming or cooling, mixing with surrounding

water masses (through diffusion or turbulent mixing), and horizontal divergence in

response to three-dimensional currents (such as upwelling) about which information is

not known. While the influence of these processes is acknowledged, they are ignored

in this investigation. The model being investigated is the one in which horizontal

advection dominates such that a past SST field and surface current data can be used

to estimate a present SST field.

When comparing SST measurements to validate the model, both absolute SST

and SST anomalies are compared. SST anomalies are defined as

SSTa = T (tj, xi, yi)−


N∑
i=1

T (tj, xi, yi)

N

 , (II.1)

where N is the total number of SST measurements in the domain. That is, the

anomaly is the difference between the SST measurement at some point and the average

SST of the region. By using SST anomalies, it is hoped that some of the influence

of large scale warming or cooling is removed. That is, the regional change in time of

temperature (
∂Tregion

∂t
) due to energy flux such as warming by the sun is accounted

for by only looking at the difference between the local point temperature and the

average of temperature over the region. If the entire region’s SST is changed by the

same amount throughout, then the SST anomaly at any point within the domain will

7



be unchanged. It is assumed that warming or cooling will occur somewhat uniformly

over the region. Localized warming or cooling will produce changes in the anomalies.

B. DESCRIPTION OF HF RADAR

The COCMP seeks to monitor ocean currents off the California coast. Ap-

plications of surface ocean currents include, among other uses: search and rescue

operations, prediction of chemical and oil spill trajectories, and prediction of trajec-

tories for fish larvae transport.

The primary instrument currently used by COCMP is the Coastal Ocean Dy-

namics Application (CODAR) High Frequency Radar antennae. These antennas use

high frequency electromagnetic pulses to measure ocean currents by a phenomenon

known as Bragg scattering along with the Doppler effect [1]. When a pulse of radar

energy is sent out, it scatters off the ocean surface in all directions. Some energy is

backscattered towards the radar receiver and, of that energy, some is Bragg resonant.

The resonant ocean waves are those traveling in a direction either directly towards or

directly away from the radar antenna with a wavelength half that of the transmitted

radiation. For these ocean waves, the antenna picks up a dramatic spike in returned

radiation. This is due to two reasons: the direction of travel of the ocean waves opens

up more of the ocean wave face to reflect radiation back towards the radar, and, more

importantly, the reflected radiation off one resonant ocean wave is in phase with the

reflected radiation off the next resonant ocean wave. This phenomenon is known as

Bragg scattering.

From the wavelength of the resonant ocean waves, the theoretical speed of the

resonant ocean wave can be calculated from the deep-water dispersion relationship.

The deep-water dispersion relationship is:

C =

√
gλ

2π
(II.2)

where C is the wave speed, g is the acceleration due to gravity, and λ is the wavelength

8



of the ocean wave [2]. The wavelength, theoretical speed, and the direction of travel

for the Bragg-resonant ocean waves are known. The received signals exhibit a Doppler

shift that is slightly different than the shift expected due to the theoretical speed of the

ocean waves. In the absence of any other influences, the Doppler shift would always be

equal to the speed of the traveling wave. The difference between the theoretical wave

speed and the speed measured by Doppler shift is due to ocean currents. Estimates

of the uncertainty of radial speed measurements are in the range of 6.9-9.2 cm/sec

[3].

Because the radars measure the ocean current speed using a Doppler shift, a

single Radar site can only give velocity data for currents moving towards or away

from that site. A single radar can only measure the component of current which

points towards or away from the radar. Therefore, measurements from multiple sites

are needed at any one location to give a complete velocity picture. Figure 3 shows

an illustration of how a Total current vector is made from the individual radial com-

ponents.

• . . using ground 

wave  HF radar sys- 

t e m s . . ,  it is also 

possible to extract  in- 

format ion about  sur- 

face waves  and 

w i n d s . . .  

the ground conditions in the vicinity of the receive 
antennas• Wet and moist sandy soils enhance the 
ground wave propagation, whereas dry and rocky 
grounds reduce signal strengths• Typical azimuthal 
resolutions are -5  °. Near the coast, this gives a 
measurement width of -0.5 km; the width is -10.0 
km at range cells 100 km offshore (Fig. 4). 

Measuring Winds and Waves 
Although the focus of this special issue, and 

many of the experiments using ground wave HF 
radar systems, is on surface currents, it is also 
possible to extract information about surface 
waves and winds from HF backscatter  spectra. 
Wave techniques are discussed by Wyatt (1997) 
and by Graber and Heron (1997), whereas the 
method for extracting wind direction is discussed 
by Fernandez et al. (1997). Very crudely, wave in- 
formation is obtained by fitting a model of surface 
wave backscatter  to the observed second-order 
portion of the spectrum (Fig. 3). That portion is 
due to reflections from waves at all frequencies 
and not just the resonant Bragg waves• Wind di- 
rection, on the other hand, is related to the ratio of 
the strength of the advancing and receding Bragg 
peaks. 

System Configurations 
Although the basic scattering principle is the 

same for all existing HF radars, distinct differences 
are found in the antenna configurations that trans- 
mit and receive the electromagnetic signals• The 
compact antenna system utilized by the Coastal 
Ocean Dynamics Applications Radar (CODAR) 
consists of crossed loops and a whip for receiving 
and a whip for transmitting radio pulses (Barrick et 
aL, 1977)• This antenna system is small and lends 
itself for deployment in highly populated and 
rocky coastal areas (e.g., cover photos)• Radars of 
this type have been in use in the Monterey Bay 
area (Paduan and Rosenfeld, 1996; Paduan and 
Cook, 1997) and, with modifications, in Germany 
(Essen et al., 1981). The omnidirectional character- 
istic of the cross-loop whip combination makes it 
possible to scan wider ocean sectors (e.g., Fig. 4), 
but this requires direction-finding techniques to de- 
termine angle for a given range cell (Lipa and Bar- 
rick, 1983; Barrick and Lipa, 1997)• 

In contrast, linear phased-array antennas consist 
of numerous (typically 8-16) elements separated 
by one ocean wavelength and aligned normal to 
the principal receive direction (e.g., cover photos). 
These radars, such as the University of Miami 's  
OSCR system, are positioned at the seaward edge 
of a beach or cliff and require open space up to 
100 m in length. The radio pulses are transmitted 
from a separate antenna array, which in the case of 
OSCR is a four-element Yagi array• Azimuthal 
resolution (direction) is obtained from well-estab- 
lished beam forming techniques• Other radars uti- 
lizing phased arrays are found in Germany (Gurgel 
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Fig. 3: Sample backscatter spectrum showing promi- 
nent Bragg peaks due to waves advancing toward and 
receding from the receiver. The smaller Dopper shift, 
A f  is due to ocean currents that, in this example, are 
moving away from the receiver• 

and Antonischki, 1997), Japan (Hisaki, 1996), 
Australia (Heron et al., 1985), France (Forget et 
al., 1981), Canada (Howell and Walsh, 1993), and 
United Kingdom (Wyatt, 1986; Prandle, 1991)• 

It is misleading to attempt to describe one HF 
radar configuration that will be optimum for all 
situations• Direction-finding (DF) and phased- 
array systems each have their advantages and dis- 
advantages. For example, DF systems like CODAR 
were developed to be able to deploy the antennas 
on a small coastal outcrop, or even on a building, 
where a long secure stretch of beach or cliff may 
not be available. In addition, the angular coverage 
from DF techniques is much greater than the, at 
most, 90 ° sector that is available using phased- 
array pointing techniques• 

At the same time, phased-array systems have 
important advantages over DF systems• Because the 
"beam" can be steered to a particular look direc- 

Fig. 4: Sample radial current coverage for  a phased- 
array radar (site 1) covering a 60 ° swath and a direc- 
tion-finding radar (site 2), which in principle can cover 
up to 360 °. At overlapping ocean bins (e.g., O) a vector 
current estimate can be made, providing the angular 
separation between the radial currents is large enough. 
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Figure 3. Illustration of Totals method. Figure taken from [1].
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The angles between sites should be as close to orthogonal as possible to pre-

vent a problem known as the geometric dilution of precision (GDOP). GDOP occurs

when the angles between radar sites are small. Small errors in the radial velocity

measurements can lead to large errors in the final current measurement [4]. Figure

4 illustrates the problem that can arise when sites with small separation angles are

used to make a total current vector with sampling error. When the measurements

are collected without any error, then the resulting current is also without error. But

when sampling error is present and the angle spread between sampling sites is small,

even small errors (10% in the figure) can lead to large errors in the final current.

GDOP is discussed further in later sections.

C. TOTALS SURFACE CURRENT METHOD

The processing of radar measurements to surface current velocities and particle

trajectories follows two methods. The first is what will be referred to as the ‘Totals

method’, and the second, the ‘Open-boundary Modal Analysis (OMA) method’. Both

methods were used to generate currents in this thesis. The resulting currents are

compared to each other and to the analytic solution of the Stommel ocean model.

In the processing of radial current measurements to currents by the Totals

method, a regular latitude/longitude grid is specified where current measurements

are desired. All radial measurements that fall within a specified radius of the grid

location are grouped together. A least squares fit is obtained for the total currents

at each grid location. The least squares problem is formed as:

r = Au. (II.3)

If a grid point has n associated radial observations, then r is an nx1 vector

of the measured radial velocities, u is a column vector (size 2x1) of the complete

10



Orthogonal measurements, no error Orthogonal measurements, with 10% error

Close measurements, no error Close measurements, with 10% error

Figure 4. Example of GDOP in radial measurements of a current vector from or-
thogonal measurement sites (top panes) and measurement sites that are separated by
30◦ (bottom panes). Black vectors are the radial measurements and red vectors are
the resulting total fitted current. In the left panes, radial measurements are sampled
without error, and in the right panes radial measurements are sampled with a 10%
error.
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velocity composed of u and v components, and A is the transformation matrix

A =



cos θ1 sin θ1

cos θ2 sin θ2

. .

. .

. .

cos θn sin θn


, (II.4)

where θi is the bearing from the ith radial measurement to the radar site that took

the measurement [5]. At a minimum, a radial measurement from two different radar

sites are needed to generate the total current measurement at a single point. Ra-

dial measurements from additional radar sites will provide more information about

the currents at the grid point and, in the absence of problems, give a better mea-

surement of the total current. The surface current field, which now contains current

measurements at the specified points of the regular grid, may be cleaned by remov-

ing currents with unreasonably large surface current magnitudes or with large errors.

Figure 5 shows an example one-hour current field of the radar domain off central

California. This current field was calculated using the Totals method.

Error measurements are also generated in calculating totals currents. Most

error measurements center around the concept of GDOP and are a function of the

spread of the angles of radial measurements that make the total current vector. If A

is the matrix which is used in the least squares fit of radial measurements to total

currents, then the covariance matrix of the total current components u and v is the

2x2 matrix:

Cov = σ2(ATA)−1, (II.5)

where σ2 is the variance of the radial measurements. The variance of the u and v

total velocity components are the first and second diagonal entries of this matrix,

respectively. The covariance of u and v are the off-diagonal entries [6]. Notice that

as the angles between two radar sites become close to parallel, the matrix (ATA)

12



Figure 5. Totals current field for CENC region on 06:00 GMT, 19 October, 2006.
Every 4th vector is plotted.
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becomes close to singular, and the inverse of (ATA) contains very large values. For

angles which are exactly parallel, the inverse of (ATA) does not exist. As the angles

between two radar sites become close to parallel, any sampling error will produce

very large variances in the u and v fitted velocities. That is, even if σ2 is very small,

the diagonal elements of equation II.5 will still tend towards infinity for close radar

measurements.

A GDOP error estimate is formed by setting a unit radial measurement vari-

ance (σ2 = 1). With this substitution for σ, the error estimate is purely a measure

of the loss of precision due to the angular spread of the radial measurements. If

additional information is known about the variance of the radial measurements that

makes the total current (σ2), then that can be added to equation II.5 to produce

another type of error measurement.

The covariance matrix is formed as above in equation II.5, and the total GDOP

error measurement is defined to be:

E =
√
‖ Cov ‖. (II.6)

That is, the total GDOP error is the square root of the covariance matrix 2-

norm, or the square root of the largest eigenvalue of the covariance matrix. This total

GDOP error measurement is a function of angle separation. Figure 6 is a plot of the

GDOP against angle separation. The GDOP error function reaches a minimum of

one at orthogonal angles (angle separations of 90◦ or 270◦) and tends towards infinity

as the angle vectors approach parallel (0◦ or 180◦). This total error is close, but not

equal, to the square root of the sum of the squares of the two variances (diagonal

elements).

Another error measurement involves finding the GDOP using only the two

most-orthogonal radial measurements that make a current vector. This is perhaps

more useful than the GDOP calculated with all the radial measurement angles. In

the full GDOP error measurement, additional radial measurements with the same

angles (additional rows in the A matrix) will lower the GDOP error. The reduction
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Figure 6. GDOP error as a function of angle separation

in GDOP is somewhat artificial because the additional radial measurements measure

the same component of current and add no new information to the least-squares fit.

D. OPEN MODAL ANALYSIS METHOD

The second method of processing radar measurements to the current veloc-

ity field uses a method called Open-boundary Modal Analysis, or OMA. The OMA

method used in this thesis follows the procedure described in [7]. The general idea

of OMA is to generate a set of modes for a given domain which can be used to

approximate any current field on that domain. The modal series approximation is

determined by minimizing a cost function to find the ideal combination of the modes

which gives the best fit to available measurement data. These modes depend only on

the shape of the domain. Once they are calculated, they can be stored for repeated

use on the same domain.
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In OMA, the domain of interest need not be rectangular. Furthermore, the

boundary of the domain Ω can be composed of multiple open and closed segments.

An open segment is one along which the normal component of the velocity can be

nonzero. Vector currents are allowed to flow into or out of an open segment. A closed

segment is one in which the normal component of the velocity is fixed at zero and no

current is allowed to flow through the segment, although currents can flow parallel to

a closed segment.

In theory, the OMA method offers several advantages over the totals currents

method. The generation of the OMA modes is only done once. Afterwards, when

fitting the currents to the OMA modes, one least-squares matrix equation needs to

be solved. This is computationally similar to the problem of finding currents with

the totals method. Unlike the totals method however, the modes are defined over

the entire domain, even for sparse current measurements. The fit results in a current

field which is also defined over the entire domain without gaps. This is a nice feature

of the OMA method, but should be utilized with caution. Currents will be reported

even in areas with few or no actual measurements. Currents in these areas are an

extrapolation of the modal fit to data in other areas, and they do not represent the

“real” currents. Attention should be paid to how much real data goes into making

the fit.

1. Calculation of Modes

The first step in OMA is to calculate the basis functions (modes) that are later

used to reconstruct the current velocities. The modes depend only on the shape of the

domain, and the calculation of the modes needs to be done only once for a particular

domain. Proceeding as in [7], it is noted that any vector field u on a domain Ω can

be decomposed into an irrotational (curl-free) vector component uϕ and a solenoidal

(divergence-free) vector component uψ. This decomposition is known as Helmholtz’s

Theorem, or the Fundamental Theorem of Vector Analysis, and is written as:

u = uϕ + uψ. (II.7)
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Because uϕ is curl-free, or irrotational, it is a conservative field and there exists a

scalar potential function ϕ such that:

uϕ = ∇ϕ. (II.8)

The field uψ is divergence-free, or solenoidal, and can be expressed in terms of a

stream function ψ:

uψ = k̂ ×∇ψ, (II.9)

where k̂ is the unit vector pointing out of the plane.

It can be verified that uϕ is curl-free and uψ is divergence-free. By taking the

divergence of u, the following nonhomogeneous partial differential equation results

for ϕ:

∇·u = ∇·(uϕ + uψ) = ∇·uϕ+∇·uψ = ∇·∇ϕ = (
∂

∂x
î+

∂

∂y
ĵ)·(∂ϕ

∂x
î+

∂ϕ

∂y
ĵ) = ∇2ϕ.

(II.10)

By taking the curl of u, the following nonhomogeneous PDE results:

∇×u = ∇× (uϕ + uψ) = ∇× (k̂×∇ψ) = ∇× (−∂ψ
∂y

î +
∂ψ

∂x
ĵ) = ∇2ψk̂. (II.11)

Taking the dot product of equation II.11 and k̂ gives

k̂ · (∇× u) = ∇2ψ. (II.12)

a. Interior Modes

This formulation for ϕ and ψ is not unique. For example, ϕ and ψ

plus any constant still satisfy equations II.10 and II.12. Hence there is some degree

of freedom and some flexibility on the choice of boundary conditions along dΩ, the

boundary of the domain Ω. The authors of [7] chose to define ψ to be zero along the

entire boundary, and specify the normal component of the flow of u solely in terms

of ϕ. To solve this pair of equations (II.10 and II.12), the method of eigenfunction
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expansion is used. ϕ and ψ are expanded in terms of their eigenfunctions, hereafter

called modes, which are solutions to:

∇2ψi = λiψi, ψi|dΩ = 0 (II.13)

∇2ϕi = λiϕi, (n̂ ·∇ϕi)|dΩ = 0. (II.14)

Because of the specific boundary conditions imposed on ϕ and ψ, the

eigenmodes of ϕ are called Neumann modes and the eigenmodes of ψ are called

Dirichlet modes. Equations II.13 and II.14 are two Sturm-Liouville equations, and

φi and ϕi are eigenfunctions of the Sturm-Liouville equations. They are linearly

independent and form a basis for the space of solutions of the Sturm-Liouville problem.

As a result, the vector fields ∇ϕi and k̂×∇ψi reconstructed from the modes ϕi and

ψi form a basis for all two dimensional vector fields in Ω [8]. The series of eigenmodes

of ϕ and ψ are used to reconstruct a velocity field u as:

u =
∞∑
i=1

αψi (k̂ ×∇ψi) +
∞∑
i=1

αϕi ∇ϕi, (II.15)

where the αi are unknown coefficients.

The important limitation so far being that any combination of the

currents reconstructed from ϕ and ψ will have zero flow on the domain boundary dΩ.

This is verified by checking the normal component of the current associated with each

mode, n̂ · u, on the boundary.

n̂ · uϕ = n̂ ·∇ϕi = 0, (II.16)

due to the boundary conditions of equation II.14. Also,

n̂ · uψ = n̂ · (k̂ ×∇ψi) = n̂ · (−∂ψ
∂y

î +
∂ψ

∂x
ĵ). (II.17)

To verify that this is zero on the domain boundary, let t̂ be a unit vector tangent

to the domain boundary. Because ψi|dΩ = 0, the boundary is a contour line in ψ,

and ∇ψ is necessarily orthogonal to the boundary and t̂. If t̂ is composed of vector
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components, (xtî + ytĵ), then

t̂ ·∇ψi = (xtî + ytĵ) ·∇ψi = (xtî + ytĵ) · (∂ψ
∂x

î +
∂ψ

∂y
ĵ) = xt

∂ψ

∂x
+ yt

∂ψ

∂y
= 0, (II.18)

which implies

xt
∂ψ

∂x
= −yt

∂ψ

∂y
. (II.19)

Combining this with equation II.17 and the specification that t̂ = n̂ × k̂, gives

n̂ = (−ytî + xtĵ) (due to the orthogonality of n̂ and t̂). Thus,

n̂ ·uψ = (−ytî+xtĵ) · (−∂ψ
∂y

î+
∂ψ

∂x
ĵ) = yt

∂ψ

∂y
+xt

∂ψ

∂x
= −xt

∂ψ

∂x
+xt

∂ψ

∂x
= 0. (II.20)

And so it is shown that the normal component of the current associated with ψi along

the domain boundary is also zero.

b. Boundary Modes

Since an arbitrary domain will consist of both closed and open boundary

segments, the full reconstruction of a current field must include flow across open

boundary segments. Open boundary flow is accounted for by including a set of

boundary modes, ϕbi . These boundary modes satisfy:

∇2ϕb|Ω =
1

A

∮
dΩ
g(s)ds, (II.21)(

n̂ ·∇ϕb
)
|dΩ = n̂ · ub|dΩ = g(s), (II.22)∫ ∫

Ω
ϕbdA = 0, (II.23)

where A is the total area of the domain Ω and g(s) is some function of the distance

along the domain boundary. Equation II.21 results from the Divergence Theorem,

which states that the volume integral of the divergence of a vector field is equal to

the flux of the vector field through the surface of the volume. The two-dimensional

analog is that the surface integral of the divergence of a surface vector field is equal

to the flux of the vector field through the boundary. In mathematical language,∫ ∫
Ω

∇ · u dA =
∫
dΩ

u · n̂ ds. (II.24)
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Combining equation II.24 with II.10 gives:∫ ∫
Ω

∇ · u dA =
∫ ∫

Ω
∇2ϕ dA =

∫
dΩ

u · n̂ ds =
∫
dΩ
g(s) ds. (II.25)

The left-hand side of equation II.21 represents the average of the Laplacian of ϕb

over the domain. Notice that the interior modes of ϕ satisfy equation II.14, while the

boundary modes of ϕ are allowed to have flow through the boundary (n̂ ·∇ϕb 6= 0).

The normal flow across open boundary segments, n̂ · u|dΩ, is given by measured

data, if available. Other data, such as current data from numerical models, may

also be used to specify normal boundary flow. To solve equations II.21 - II.23, the

boundary function g(s) is expanded in terms of a set of basis functions. Any set

of basis functions can be used, though one convenient set is the set of Fourier basis

functions gi(s) = {cos 2πis
l
, sin 2πis

l
}, where, again, s is the distance along the domain

boundary, l is the total length of the boundary, and i is a basis index. The boundary

mode process is similar to solving a nonhomogeneous ODE, whereby the solution

to the homogeneous problem is found first, and then a particular solution to the

nonhomogeneous problem is found. In the case of OMA, the interior modes satisfy

the homogeneous problem (with no boundary flow), and the boundary modes satisfy

the nonhomogeneous problem (with boundary flow specified by measured data). By

the principle of superposition, the sum of the general solution and the particular

solution is also a solution. More information on the boundary modes is available in

[7] and [8].

With these boundary modes added, the full current field (including

current through open boundary segments) is reconstructed as:

u =
∞∑
i=1

αψi (k̂ ×∇ψi) +
∞∑
i=1

αϕi ∇ϕi +
∞∑
i=1

αbi∇ϕbi . (II.26)

Since the exact solution of the PDE will involve an infinite number of

modes, some stopping criteria is specified in the mode generation. This is done by

specifying a mode scale. All modes on a scale less than the stopping scale are thrown

out. More detail on the scale and stopping criteria is contained in [7].
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2. Unstructered Grid

In contrast to the total currents method, the OMA method is not calculated

on a rectangular grid. The PDE is instead solved on an unstructured triangular mesh.

Rectangular grids can be problematic for solving PDEs on arbitrary non-rectangular

domains. If greater grid resolution is desired (along a coastline for example), a rect-

angular mesh must be subdivided across the entire domain, leading to vast increases

in processing time and required resources. Furthermore, a complex coastline approx-

imated by rectangles might have problems if a no-flow boundary condition is applied

on the artificial ‘corners’ of the coast. It should be noted that in our case, no no-flow

boundary conditions were applied in the rectangular grid (totals method). In that

case, the currents were generated from a least-squares fit to the radial measurements,

and any current vectors falling on the coastline (from erroneous radial measurements,

for example) were masked out. Currents next to the coastline, however, are allowed

to have current vectors that appear to flow through the coastline. Figure 7 shows an

example of a grid mesh and an unstructured triangular mesh applied near a coastline

point.

With an unstructured triangular mesh, however, higher resolution is available

in the areas where it is needed without unecessarily increasing resolution across the

entire domain. In addition, no-flow boundary conditions can be applied in a more

realistic manner.

3. Fitting Current Data to OMA Modes

Once the modes are calculated, any current field (up to the scale of modes

that were kept) can be represented as a linear combination of these modes. The

linear combination is written in equation II.26. The coefficients of the modes in this

linear combination are found by fitting the existing current measurements to the

OMA modes. The currents are fit using the u and v components of the total currents

generated from the radial measurements or using the radial measurements directly.

Using radial measurements directly to find the OMA mode coefficients is generally
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(a) (b)

Figure 7. Example of Coastline Grid around Point Pinos at the souther end of Mon-
terey Bay using (a) Rectangular Grid, and (b) Unstructured Triangular Mesh. Both
panes show the flow conditions on the domain boundary. Arrows indicate allowed
direction of allowed flow.

preferable because it avoids the additional error introduced during the radials to

totals calculation. In fitting the modes to existing current data, the mode coefficients

are calculated that provide the minimal error between modal currents and currents

measured by radar. This is done by minimizing a cost function. The cost function

is defined as the square root of the sum of the squared differences between modal

currents and measured currents, although other cost functions could be used. One

adjustment to the cost function used in the processing of this thesis is to add a

penalty for large mode coefficients. This prevents modal currents from becoming

unrealistically large in areas where there are no current measurements to constrain

them. In areas where measured data is sparse, modal currents can become quite large

without affecting the difference between modal currents and measured currents. The
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large coefficient penalty term in the cost function reduces the tendency of the fitted

currents to become unreasonably large in areas where data measurements are sparse.

Additionally, weights may be introduced to place more importance on certain data,

although this is not done in this thesis.

The general cost function used to find mode coefficients is:

ζ =

√√√√√ M∑
m=1

W r
m

(
N∑
n=1

(αnun(xm)) · r̂m − urm

)2
+

M

2

N∑
n=1

κnα2
n, (II.27)

where M is the total number of measurements, N is the total number of modes, un(xm)

is the current at location m associated with the nth mode, r̂ is the unit vector from the

current location to the radar site, and urm is the measured radial current at location

m in the direction of r̂. To minimize this function, note that minimizing the square

of this cost function is equivalent to minimizing the cost function itself. Taking ∂(ζ2)
∂αn

and setting equal to zero gives

∂(ζ2)

∂αn
=

M∑
m=1

[
2W r

m

(
N∑
n=1

(αnun(xm)) · r̂m − urm

)
(uj(xm) · r̂m)

]
+Mκjαj = 0

(II.28)

for all coefficients αj. This is a linear set of M equations in N unknowns. The system

can be solved exactly if N measurements exist (M = N), or can be approximated

with a least squares solution if more than N measurements exist (M > N). An

overdetermined system is preferable to an exact solution, since the measurements

contain noise which can presumably be filtered out if many more measurements than

modes exist (M � N).

To ensure that equation II.28 is indeed a minimum of the cost function equation

II.27, the second derivative is examined.

∂(ζ2)2

∂α2
n

=
M∑
m=1

[
2W r

m(uj(xm) · r̂m)2
]

+Mκj (II.29)

Assuming that the large coefficient penalty, κ, and the weights, W r
m are both posi-

tive, equation II.29 is everywhere positive and equation II.28 is guaranteed to be a

minimum of the cost function II.27.
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E. PARTICLE TRAJECTORIES

Once the current field is known, forward particle trajectories can be calculated.

A particle trajectory describes the path a particle takes when moving with a velocity

described by the current velocity field. The trajectories are calculated by solving the

ordinary differential equation (ODE):

dx

dt
= u(t,x(t)), (II.30)

where x is the position vector composed of latitude and longitude coordinates and

u(t,x(t)) is the velocity vector composed of latitudinal and longitudinal velocities.

Many techniques are available for numerical solution of ODEs. The trajectory

equation II.30 is solved using the Runge-Kutta fourth-order, fifth-stage method dur-

ing this investigation. The Runge-Kutta fourth-order, fifth-stage method for solving

ordinary differential equations is a one-step, multi-stage method. It is a one-step

method in that to find the value of x(ti+1), only data from the previous point x(ti) is

used. The Runge-Kutta fourth-order, fifth-stage method uses the following scheme:

let dy
dt

= f(t, y) be an ordinary differential equation with initial condition y(t0) = y0.

The solution to this initial value problem can be approximated numerically by:

yn+1 = yn + h(b1k1 + b2k2 + b3k3 + b4k4 + b5k5), (II.31)

where

k1 = f(tn, yn) (II.32)

k2 = f(tn + c2h, yn + h(a21k1)) (II.33)

k3 = f(tn + c3h, yn + h(a31k1 + a32k2)) (II.34)

k4 = f(tn + c4h, yn + h(a41k1 + a42k2 + a43k3)) (II.35)

k5 = f(tn + c5h, yn + h(a51k1 + a52k2 + a53k3 + a54k4)). (II.36)

The coefficients ai, bi, ci are given by the particular fourth-order Runge-Kutta

algorithm being used and h is the step size. The fifth stage is used to bound the
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error of the approximation yn+1. The error can be controlled by examining the fifth

stage and varying the step size h to keep the local truncation error below a specified

bound.

In the case of this thesis, equation II.30 is the ODE that is solved to make

particle trajectories. Let xn be the particle position at time tn. Then the particle

position at the next time step tn+1 is approximated by:

xn+1 = xn + h(b1k1 + b2k2 + b3k3 + b4k4 + b5k5), (II.37)

where

k1 = u(tn,xn) (II.38)

k2 = u(tn + c2h,xn + h(a21k1)) (II.39)

k3 = u(tn + c3h,xn + h(a31k1 + a32k2)) (II.40)

k4 = u(tn + c4h,xn + h(a41k1 + a42k2 + a43k3)) (II.41)

k5 = u(tn + c5h,xn + h(a51k1 + a52k2 + a53k3 + a54k4)). (II.42)

u(t,x(t)) is the current velocity field.

In the numerical solution of many ODEs, evaluations of the function dy
dt

=

f(t, y) are a computational expensive step. In this thesis, evaluating the derivative of

the position vector simply involves a lookup in the velocity data field, which contains

velocity information at specific grid points. When the value of the derivative is

needed at a location not specified in the current fields (any location other than the

grid points), interpolation is done to approximate the currents at the desired points.

If the current field is the output of the totals current method, then the field is defined

on a regular latitude/longitude grid. Simple bilinear interpolation in space is used to

interpolate between the nearest four latitude/longitude points where the currents are

known. If the current field is the output of the OMA method, then the currents are

defined on a triangular mesh. Currents are assumed to be constant across a triangle,

and if a current measurement is needed at a grid point that is not the center of a
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triangle, then the current value for whatever triangle the grid point falls within is

returned. This is nearest neighbor interpolation. For both the Totals method and

the OMA method, bilinear interpolation in time is performed last to find current

values at times not specified in the current field.

Bilinear interpolation is not a highly accurate interpolation scheme. Higher

order interpolation methods are available that give greater accuracy in interpolating

functions. However, the sampling error inherent in the current fields (error on the

order of 10%) usually will dominate any error resulting from interpolation, making

higher order interpolation methods unnecessary [3].
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III. METHODS

A. MODEL VALIDATION AND SST COMPARISONS

Figure 8 shows a flow chart of the processing and validation procedure. The

SST comparisons formed the main test of the thesis hypothesis. SST was compared in

three different ways: advected SST comparison, static SST comparison, and random

SST comparison. The advected method of SST comparison compared SST according

to the hypothesized model. Static and random comparison methods were meant as

baselines. In each case, absolute SST and SST anomaly were used in the comparison.

Statistics were calculated on the SST differences between all the points in the

comparison. One statistic used in the comparisons is the root mean square (RMS)

difference. The RMS is defined as:

RMSdifference =

√√√√√√
n∑
k=1

(Tk(t0, x0, y0)− Tk(t1, x1, y1))2

n
. (III.1)

That is, the RMS difference is the square root of the average of the squared temper-

ature differences.

In the advected method, SST values at the arrival points are compared with

SST values at the departure points. Between images, many points are compared. An

illustration of the advected comparison is shown in Figure 9.

In the static comparison method, SST values at the arrival points in the sec-

ond image were compared against SST values at those same locations in the first

image. Again, statistics were calculated on the SST differences of all the points in

the comparison. An illustration of the static comparison method is shown in Figure

10.

In the random comparison method, SST values at the arrival points in the

second image were compared against random points within the same image. An

illustration of the random comparison method is shown in Figure 11.
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Begin with two SST images 
at times t0 and t1

Calculate currents from time t0 to time t1

By the Totals Method By the OMA Method

Starting with a grid of departure points at 
time t0, calculate trajectories from time t0 to 
time t1 using Totals currents

Results in a set of arrival points at time t1,
which are di�erent than the set of arrival 
points calculated using trajectories using
OMA currents.

Results in a set of arrival points at time t1,
which are di�erent than the set of arrival 
points calculated using trajectories using
Totals currents.

Starting with a grid of departure points at 
time t0, calculate trajectories from time t0 to 
time t1 using OMA currents

Advected Comparison - compare 
SST at the arrival points at time t1 
with SST at the departure points 
at time t0.

Static Comparison - compare
SST at the arrival points at time
t1 with the SST at these same 
points back at time t0.

Random Comparison - compare
SST at the arrival points at time
t1 with the SST at other random
points within time t1.

Static Comparison - compare
SST at the arrival points at time
t1 with the SST at these same 
points back at time t0.

Random Comparison - compare
SST at the arrival points at time
t1 with the SST at other random
points within time t1.

Advected Comparison - compare 
SST at the arrival points at time t1 
with SST at the departure points 
at time t0.

Figure 8. Flow chart of SST comparison procedure.
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Figure 9. Example illustration of comparison of advected points between SST images.
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Static 
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Figure 10. Example illustration of static comparison of points between SST images.
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Random
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Figure 11. Example illustration of comparison of random points within a SST images.

In testing the hypothesized model, all possible combinations of SST images

within the case study are compared with each other. Each comparison method (ad-

vected, static, and random) was used in the comparison between each pair of images.

If the advected method is a good predictor of SST, then the RMS statistic of the

advected comparisons will be closer to zero than the RMS statistic of the other com-

parison methods.

B. DATA USED
1. SST Data

As mentioned previously, we used the NOAA high resolution AVHRR SST

dataset in this thesis. All single-pass POES SST images were downloaded for the case

study periods at the highest resolution available, approximately 1.5km. Data from

each satellite pass within the case-study periods were downloaded from the NOAA

CoastWatch Browser in MATLAB format. NOAA CoastWatch data is available at
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http://coastwatch.pfel.noaa.gov/. Each SST pass was analyzed for cloud cover. If a

pass had relatively low cloud cover within the CENC domain, it was flagged to be used

in the analysis. These good images were used because of the high probablility that

independent SST measurements from the satellites will be available for the location

we need. If we included every SST image, including the cloudy ones, then few SST

measurements would be available for comparison. After SST images were downloaded

and good images selected for each case study, the images were masked using the CENC

area.

2. HF Radar Data

As mentioned above, the HF radar data used in this thesis originates with the

California Ocean Currents Monitoring Program (COCMP). This data is available at

http://www.cencalcurrents.org/. Data was downloaded as individual radial files for

every hour within the case study periods. A single file contained radar data for one

hour from a single radar site.

C. CASE STUDIES

To test the hypothesis that current data could be used to improve SST pre-

dictions, test cases were needed.

1. CENC Domain

Our area of study is the coastal ocean of central California from Point Sur to

Point Arena and out to sea approximately 100 nautical miles. This area, termed the

CENC domain, is the approximate limit to the HF Radar’s spatial coverage. High

resolution satellite SST data (approximate resolution is 1.5 km) is available for this

region from the POES AVHRR.

2. Dates of Study

Two time periods were chosen for our study. These case study periods were

chosen because of relative abundance of both HF Radar data and clear satellite SST
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images. The limiting factor in case study selection is the number of clear SST images

available for comparison. The SST data from these case study periods contain a high

number of very clear images, necessary for comparison of advected SST pixels with

SST measured from satellites. The case study periods were October 17-28, 2006 and

January 9-29, 2007.

In the October 2006 case study, there are a total of 43 POES satellite passes

with an average cloud cover of 47.5% within the CENC domain. Of these 43 satellite

passes, 11 passes were flagged to be used in the study. These 11 images have an

average cloud cover of 8.9%. In the January 2007 case study, there are a total of 74

POES satellite passes with an average cloud cover of 57.6% within the CENC domain.

Of these 74 satellite passes, 19 passes were flagged to be used in the study. These 19

images have an average cloud cover of 11.9%.

Figure 12 shows a plot of the normalized radar current data coverage for this

region for the time periods of the study. The colored squares in Figure 12 represent the

percentage of time a radar measurement was available for the different case studies.

The white outline is the limits of the CENC region.

3. Stommel Ocean Model

An analytical ocean current field was needed to compare currents generated by

the Totals and OMA method to an analytical solution. While any vector field with

no-flow boundary conditions could be used, the Stommel ocean model was chosen

because of its familiar use in oceanography. The Stommel ocean model was first in-

troduced by Henry Stommel to study the causes of a phenomenon known as westward

intensification [9]. Westward intensification refers to the tendency of large-scale ocean

circulation to form fast, narrow, and deep currents on the western edge of ocean basins

and slow, wide, and shallow currents on the eastern edge of ocean basins. The model

assumes a rectangular ocean with wind stress, Coriolis, gravitational, and frictional

forces. The component of flow normal to any of the ocean boundaries is necessar-

ily zero. Wind stress forces are defined to be purely in the east-west direction as,
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(a) (b)

Figure 12. Radar data coverage for the central California region. a. October 17-28,
2006 b. January 9-29, 2007

τ = − cos
(
πy
L

)
, westward in the bottom part of the ocean, and eastward in the top

part of the ocean. With these assumptions, the model can be represented by the

equation:

γ∇2Ψ + β
∂Ψ

∂x
= −τ0π

L
sin

(
πy

L

)
. (III.2)

Ψ is a stream function which describes the current velocity, τo is the maximum am-

plitude of wind stress, γ is the bottom friction coefficient, β is the variation of the

Coriolis parameter with latitude, and L is the length and height of the domain. A
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steady-state analytic solution to this equation is possible. The u and v components

of the steady-state solution are:

u = −∂Ψ

∂y
=
(
−π
L

)
(c1e

λ1x + c2e
λ2x + c3) cos

(
πy

L

)
(III.3)

v =
∂Ψ

∂x
= (c1λ1e

λ1x + c2λ2e
λ2x) sin

(
πy

L

)
(III.4)

where

λ1,2 = −
(
β

2γ

)
±
√

(
β

2γ
)2 + (

π

L
)2 (III.5)

c1 = −
(
τoL

γπ

)(
eλ1L − 1

eλ2L − eλ1L

)
−
(
τoL

γπ

)
(III.6)

c2 =

(
τoL

γπ

)(
eλ1L − 1

eλ2L − eλ1L

)
(III.7)

c3 =

(
τoL

γπ

)
. (III.8)

A fictitious rectangular ocean domain was created and used to simulate steady

state Stommel-like circulation. To provide a geophysical context, the fictitious ocean

was given longitude boundaries of −124◦ West to −123◦ West and latitude boundaries

of 36◦ North to 37◦ North (Figure 13). It should be noted that the Stommel ocean

model is used to model oceans on an ocean basin-wide scale. The size of our domain

is significantly smaller and the Stommel model does not have a physical context on

these scales. The Stommel model was chosen purely for its analytic current field and

familiarity to those in the field of oceanography.

The ocean surface flow at any point was calculated using equations III.3 and

III.4. Within the ocean model, a subdomain was mapped out for testing of the HFR

current generation methods. This subdomain had open boundaries on all sides except

the southern boundary, which was shared with the larger ocean domain and is a closed

boundary.
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Figure 13. Stommel Ocean model and sample HF Radar domain

On the southern boundary, five radar sites were placed at regular intervals.

These sites were used to sample the current velocity field based on typical resolutions

of HF Radars. For each radar site, a radial grid of points was created. The radial

grid points were spaced at 5◦ angles between radial ‘spokes’ and 3 kilometers distance

between radial range rings. This spacing is typical of the radar measurement resolu-

tion seen on the Central California coast. At these radial grid points, the Stommel

field was sampled and the component of the total current velocity in the direction of

the bearing line between radar site and grid point was recorded. The component of

the velocity along the bearing line is:

r = |u| cos (φ− θ), (III.9)
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where |u| is the magnitude of the current velocity sampled from the Stommel field

using equations III.3 and III.4, φ is the heading from the radial grid point to the

radar site, and θ is the direction of the current vector. A positive radial component

points from the radial grid point to the radar site. All angles are measured in the

traditional mathematical sense of counterclockwise from East.

After sampling of the Stommel current field, each radar site had measurements

of the radial current components at the locations of the radial grid points. A random

error was added to each radial measurement to simulate instrument or sampling

noise. The random error was uniformly distributed from -10% to +10%. In addition,

a certain percentage of random radial measurements were thrown out to represent

missing data. The error and missing data were added to attempt to represent physical

reality, which contains erroneous and missing data. These radial measurements were

then processed back to the current field using either the Totals Method or the OMA

Method. A time-series of the Stommel current field was built representing 15 days

of data with a sampling every hour, for a total of 360 measurements. While each

sampling of the Stommel current field sampled a steady-state field, the current field

resulting from the Totals or OMA method was different for each hour’s data, due

to the random error and missing measurements introduced. The OMA and Totals

method were analyzed under these differing conditions to see which method proved

more robust to erroneous or missing data.

D. MATLAB PROCESSING

In processing the current data, we used the ‘HFR Progs’ MATLAB toolbox

developed by Dr. David Kaplan. ‘HFR Progs’ is a toolbox for the processing, view-

ing, and analysis of HF Radar Currents. The latest version is available at

https://cencalarchive.org/∼cocmpmb/COCMP-wiki. It provides functionality to pro-

cess radial current measurements to total currents and particle trajectories using the

totals method, as well as functionality to compute OMA modes and fit radial data
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to OMA modes and calculate trajectories based on the OMA fits. All processing was

completed using either MATLAB 7.0 or MATLAB 7.4.

1. Processing of Radial Data

Radial current data was obtained from the COCMP Web Archive for the two

case studies. Each radar data file contains one hour’s worth of radial surface current

for one radar site. Before the radial files are processed to Total currents or fit to

OMA modes, they are cleaned. The radial measurements are cleaned by removing

any measurements greater than 100 cm/sec, which is a reasonable upper bound on

current velocities for the CENC region [10]. All radial measurements from each radar

site are also cleaned using a masking polygon unique to each radar site. The masking

polygon for each site represents the area of reasonable data coverage. Occasionally,

the radar will report data from areas which are unreasonable, such as current data

lying over land. If the radial data file contains measurements that lie outside the

masking polygon, these measurements will be removed in this masking step. Finally,

radial data was interpolated to fill in gaps. Interpolation was accomplished using the

closest values in the bearing direction (filling in a maximum of two missing bearing

bins) and in the range direction (filling in a maximum of one missing range bin).

2. Processing to Totals Currents

Cleaned, masked, and interpolated radial current measurements were then

processed to total currents using the least-squares fit described in Chapter II, section

C. Currents were generated for every hour of each day of the case study time periods.

The currents were generated on a regular latitude/longitude grid with two and a

half kilometer spacing, which is comparable to the native resolution of the radar

observations [3]. In order to make a total current measurement at a grid point, it was

specified that at least three radial measurements from at least two different radar sites

were required. All radial measurements within three kilometers of a grid point were

used in each total current generation. With this search radius, it is possible that a
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single radial measurement may have been used in making total current measurements

at multiple grid points (i.e., neighboring grid results are not completely independent).

After currents were generated on the grid for each hour, the total currents were

cleaned and masked. The currents were cleaned by removing any current vector with

a speed above 100 cm/sec. Total current vectors were cleaned further by removing

any current vector with a GDOP error above 1.5, where GDOP was calculated using

the two most orthogonal radial measurements (error flag is ‘GDOPMaxOrthog’ in the

HFR Progs MATLAB Toolbox). A GDOP error less than 1.5 corresponds to an angle

separation of between 71◦ and 109◦. Any current measurements remaining after the

mask was applied were generated from radial measurements with angle separations

in that range.

After cleaning, the total currents were again masked with a polygon outlining

the CENC domain to ensure that no outlying current vectors remained. These cur-

rents were then interpolated in space and time to fill in any holes in the space/time

vector current grid. The interpolation method uses bilinear interpolation in space

and time, and then takes the average of the two.

3. OMA Modes Processing

The HFR Progs Toolbox was used to generate OMA modes on the CENC and

the Stommel domain. This toolbox makes heavy use of MATLAB’s PDE Toolbox to

generate the adaptive mesh and to solve the PDE eigenvalue problems of equations

II.13 and II.14. MATLAB’s PDE Toolbox uses a finite element method to numerically

solve eigenvalue PDEs such as this. Certain parameters are required in the modes

calculation. The modes were generated with a cutoff scale of five kilometers. A

seed value for the estimated number of triangles in the unstructured mesh was given

as 10,000 triangles. The method first generated a triangular mesh to use in the

mode generation. The MATLAB toolbox uses a Delaunay triangulation algorithm to

generate the mesh. Figures 14 and 15 show the triangular mesh generated for the

entire domain and for a closeup of the Monterey Bay.
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Figure 14. Triangular Mesh for CENC region.
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Figure 15. Close-up of Triangular Mesh for the Monterey Bay.
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Modes were then generated on this triangular mesh. This resulted in 84 bound-

ary modes, 576 Dirichlet (divergence-free) modes, and 653 Neumann (vorticity-free)

modes for a total of 1,313 modes. This is a larger number of modes for a larger area

than previously attempted with HF Radar data. The largest scale modes are plotted

in Figures 16, 17, and 18.

Modes were also calculated for the hypothetical Stommel model using the same

parameters.

4. Fitting Radial Data to OMA Modes

For fitting radial data to OMA modes, the radial files were prepared in the

same method as preparing for total current generation, except no radial interpolation

was performed. A κ value of 10−3 was used for the coefficient penalty. The reasoning

for this κ value is discussed in chapter IV, section A.

5. Particle Trajectories

The particle trajectories were calculated in a similar way for both the Totals

and OMA methods. Once currents were available, both methods used MATLAB’s

‘ode45’ function to solve the advection differential equation II.30. The MATLAB

‘ode45’ function is a Runge-Kutta (4,5) ODE solver which uses Runge-Kutta coeffi-

cients developed in [11].
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(a) (b)

(c) (d)

Figure 16. Dirichlet, or Divergence-free modes. a, b, c, d show the first, second, third,
and fourth divergence-free modes: ψ1, ψ2, ψ3, ψ4. Also shown are the corresponding
contribution to the current field from these modes in black.
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(a) (b)

(c) (d)

Figure 17. Neumann, or vorticity-free modes. a, b, c, d show the first, second, third,
and fourth vorticity-free modes: ϕ1, ϕ2, ϕ3, ϕ4. Also shown are the corresponding
contribution to the current field from these modes in black.
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(a) (b)

(c) (d)

Figure 18. Boundary modes. a, b, c, d show the first, second, third, and fourth
boundary modes: ϕb1, ϕ

b
2, ϕ

b
3, ϕ

b
4. Also shown are the corresponding contribution to

the current field from these modes in black.
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IV. RESULTS

A. STOMMEL MODEL CURRENTS
1. Current Statistics

Using an analytic solution and calculating Totals and OMA currents from

this solution allowed for direct comparison of the currents and the analytic solution.

Radial measurements were sampled from the (steady-state) analytic solution and used

to build up currents using the Totals and OMA method. Current magnitudes for the

analytic solution in the Stommel subdomain range from 0 cm/sec to 80 cm/sec, with

typical values in the 20 - 30 cm/sec range. Error and sampling holes were introduced

as described in Chapter III, section 3. The percentage holes varied from 0% to 90%

in increments of 10%. The resulting current fields were then compared against the

analytic solution. Statistics were calculated for the magnitude of the difference vector

of the Total and OMA current field and the analytic solution. These statistics are

presented in Tables I and II. The RMS statistic is the RMS of the magnitude of

the difference vector, and mean error is calculated as the mean of the ratio of the

magnitude of the difference vector and the magnitude of the analytic velocity vector.

% Radial Holes % Missing Totals Points Max Difference Vector RMS Difference Mean Error
0% 0.0% 1.7 cm/s 0.3 cm/s 5.9%
10% 0.3% 2.2 cm/s 0.3 cm/s 6.3%
20% 0.8% 2.6 cm/s 0.4 cm/s 6.8%
30% 1.7% 3.0 cm/s 0.4 cm/s 7.4%
40% 2.9% 3.4 cm/s 0.5 cm/s 7.8%
50% 6.1% 4.1 cm/s 0.5 cm/s 8.3%
60% 13.3% 4.7 cm/s 0.6 cm/s 8.1%
70% 23.2% 4.6 cm/s 0.6 cm/s 7.3%
80% 44.6% 4.4 cm/s 0.6 cm/s 5.0%
90% 78.3% 6.7 cm/s 1.0 cm/s 1.9%

Table I. Statistics for Totals Currents calculated on Stommel domain.
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% Radial Holes % Missing Totals Points Max Difference Vector RMS Difference Mean Error
0% 0% 41.3 cm/s 0.8 cm/s 11.6%
10% 0% 41.0 cm/s 0.8 cm/s 11.9%
20% 0% 40.3 cm/s 0.8 cm/s 12.3%
30% 0% 40.0 cm/s 0.9 cm/s 13.0%
40% 0% 39.5 cm/s 0.9 cm/s 13.8%
50% 0% 39.7 cm/s 1.0 cm/s 14.9%
60% 0% 41.4 cm/s 1.1 cm/s 17.0%
70% 0% 47.0 cm/s 1.2 cm/s 19.4%
80% 0% 60.4 cm/s 1.5 cm/s 25.5%
90% 0% 134.0 cm/s 2.6 cm/s 44.9%

Table II. Statistics for OMA Currents calculated on Stommel domain.

2. Totals Currents Reconstruction

Tables I and II reinforce that the Totals method is a local fit method, while the

OMA method is a global fit method. It is seen from Table I that the Totals currents

are a good approximation for the analytic currents even when a large percentage of

the radar measurements that go into making Totals currents are removed. This is

reflected in the low RMS difference and mean error entries. An interesting feature

of the Totals method is reflected in the mean error column. As the number of holes

increases, the mean error of the measurements also increases, but then starts to

decrease as the percentage of radial holes grows past 50%. Due to the spacing and

location of the radar sites, the final current measurements become concentrated in

the lower half of the domain. Even when 90% of radial measurements are removed,

more than enough radial measurements exist to generate currents in the southern

portion of the domain. This leads to a very good fit in the lower part of the domain,

and no measurements at all in the rest of the domain, hence the lower mean error.

The biggest drawback to this method is the large amounts of missing data that result

when sparse radial coverage is available. Figure 19 shows two reconstructed current

fields using the Totals method on the Stommel field with 0% and 90% holes. These

are single time slices of the fields which give rise to the statistics in Table I, rows one
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and ten. The reader is also referred back to Figure 13 in Chapter III, section C for a

plot of the analytic Stommel currents.

(a) (b)

Figure 19. Reconstruction of Stommel current field using Totals method. (a) Current
field sampled with 10% error and 0%holes. (b) Current field sampled with 10% error
and 90% holes.

3. OMA Currents Reconstruction

In contrast to the Totals method, the OMA method is a global method. All

available radial measurements are used in the cost function to find the mode coeffi-

cients, αi, that best fit the modes to available measurements. Because the modes are

defined over the entire domain, reducing the number of radial measurements will not

reduce the coverage of the OMA currents. As can be seen in the OMA statistics table,

however, reducing the number of radial measurements does reduce the accuracy of the

OMA fit. These large differences are present in areas with few radial measurements.

Even for relatively dense and uniform radial coverage, the OMA method can lead to
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large differences for a few current vectors, particularly along the edge of the domain.

Figure 20 shows a reconstructed OMA current field for the same Stommel field with

0% and 90% holes. These are the single time slices of the fields which give rise to

the statistics in Table II, rows one and ten. It is seen that the domain boundaries,

particularly the southwest corner, are hard for the OMA method to fit.

(a) (b)

Figure 20. Reconstruction of Stommel current field using OMA method. (a) Current
field sampled with 10% error and 0%holes. (b) Current field sampled with 10% error
and 90% holes.

Figure 21 shows the contribution to the OMA currents from each of the differ-

ent type of modes: Neumann (ϕ), Dirichlet (ψ), and Boundary (φb). The full current

field is a sum of these three parts. The modes are fit to the field with 0% radal

holes and 10% error (the first row in Table II). From these figures, it is seen that

the boundary modes are contributing most to the errors seen in the lower left and

lower right portions of the Stommel domain. The Dirichlet and Neumman modes do

not have much difficulty in these corners because the boundary conditions that are
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imposed on these modes mean that there is no difference between open and closed

boundary segments. The Boundary modes, however, do “see” a difference in open and

closed boundaries. These corners, where a closed boundary meet an open boundary

can be difficult to fit for boundary modes. The biggest errors in the OMA fits occur

in these corners, where the boundary modes have difficulty adjusting for the change

from closed to open boundaries.

4. Mode Coefficient Penalty

A study was done on the κ parameter for the Stommel domain. Small κ

values translate into small penalties for large mode coefficients. If there are few

holes and abundant radial coverage, then the measurements naturally limit the mode

coefficients from becoming large and the κ term in the cost function is unnecessary.

If there are large holes in the radial data coverage, then the κ term is necessary in the

cost function to keep mode coefficients and currents from becoming large in areas of

little data coverage. However, including a κ term which is too large might suppress

mode coefficients below their accurate value. Of course, the extent of data coverage

is not known before the time of measurement, so a value for κ should be chosen

that both suppresses unrealistically large mode coefficients while allowing those mode

coefficients to accurately describe available measurements. Figure 22 shows the RMS

difference between OMA currents and analytic currents plotted against the logarithm

of κ for varying amounts of missing data. A κ value of 10−3 − 10−2 minimizes the

RMS difference of fitted currents with actual analytic currents for a wide range of

missing data. A value of 10−3 was chosen for this investigation. These results agree

with [7], where an analysis of the κ parameter was conducted by comparing OMA

and Totals currents for cases near Bodega Bay.
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(a) (b)

(c)

Figure 21. Contributions to the Stommel currents from the different types of modes.
a. Dirichlet (curl or vorticity) modal currents. b. Neumann (divergence) modal cur-
rents. c. Boundary modal currents.
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Figure 22. RMS difference of OMA currents and the analytic Stommel solution for
varying amounts of missing data.

B. SST COMPARISONS AND MODEL TESTING

Currents and trajectories were calculated for the CENC domain for the Oc-

tober and January case studies. SST comparisons were carried out between all high-

quality satellite image pairs in the case studies (both for absolute temperature and

temperature anomaly) as described in Chapter III, section A. For the October case

study, this resulted in a total of 55 image pair comparisons. For the January case

study, this resulted in 171 image pair comparisons. The result of these comparisons

were a set of statistics on each pair of SST images that were compared. Figures 23

to 30 show the RMS of the difference of SST points for the difference comparison

schemes against the difference in time between compared SST images.

Figures 23 through 26 show the absolute SST comparisons using both Totals

and OMA currents for the two different case studies. Figures 27 through 30 show the

SST anomaly comparisons using both Totals and OMA currents for the two different

case studies.
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Figure 23. RMS of the difference of SST points using advected, static, and random
comparisons. Absolute SST is compared, and particle trajectories are calculated using
Totals currents for the January, 2007 case study.
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Figure 24. RMS of the difference of SST points using advected, static, and random
comparisons. Absolute SST is compared, and particle trajectories are calculated using
OMA currents for the January, 2007 case study.
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Figure 25. RMS of the difference of SST points using advected, static, and random
comparisons. Absolute SST is compared, and particle trajectories are calculated using
Totals currents for the October, 2006 case study.
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Figure 26. RMS of the difference of SST points using advected, static, and random
comparisons. Absolute SST is compared, and particle trajectories are calculated using
OMA currents for the October, 2006 case study.
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Figure 27. RMS of the difference of SST points using advected, static, and random
comparisons. SST anomaly is compared, and particle trajectories are calculated using
Totals currents for the January, 2007 case study.
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Figure 28. RMS of the difference of SST points using advected, static, and random
comparisons. SST anomaly is compared, and particle trajectories are calculated using
OMA currents for the January, 2007 case study.
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Figure 29. RMS of the difference of SST points using advected, static, and random
comparisons. SST anomaly is compared, and particle trajectories are calculated using
Totals currents for the October, 2006 case study.
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Figure 30. RMS of the difference of SST points using advected, static, and random
comparisons. SST anomaly is compared, and particle trajectories are calculated using
OMA currents for the October, 2006 case study.
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Interpretation of these statistics is difficult, and definite conclusions on a ‘best

method’ impossible. In these SST comparisons, the random comparison is used as

a ‘baseline’ comparison. In the random comparison, SST (or SST anomaly) at the

arrival points of the trajectories are compared against another random SST pixel

within the image. This serves as a measure of the inherent variability within the

image. In the absolute comparisons in the January case study (Figures 23 and 24),

the static and advected methods show a general upward trend as the time separation

between SST images increases for both OMA and Totals trajectories. There does

not appear to be a clear distinction between the advected and static methods for

the absolute temperature comparison in January until the time difference reaches

approximately 8-10 days, at which point it appears that the static method more

regularly leads to smaller RMS values than the advected method, although the points

are still grouped together. Static and advected RMS values remain lower than random

comparisons until the time difference is approximately 6-8 days, at which point all

comparison methods become intermingled.

For absolute temperature comparisons in October, advected and static meth-

ods show similar results, starting lower than the random comparisons, rising up higher

than the random points around time differences of 3-5 days, then falling again and

starting to rise. The reason for the peak at 3-5 days is unclear. In general, it appears

that the static method gives lower RMS values than the advected method, although

the points are usually grouped close together.

In the SST anomaly comparisons, the approximations of the advected and

static methods become more accurate. Anomalies were compared as an attempt to

remove the effects of large scale warming or cooling of the SST in our domain. If the

entire area was warmed or cooled at a similar rate over the time difference between

starting and ending images, then it was hoped that taking the anomaly would account

for most of this change. In the January time period, both advected and static methods

appear to perform (predict SST) better than a random sampling. For time differences
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up to 3-4 days, the two methods are indistinguishable for both OMA and Totals

trajectories. After 3-4 days, the static method generates lower RMS differences than

the advected method. Both methods seem to do better than the random comparison

method. The static method seems to outperform the advected method for all values of

time separation, although they are grouped fairly close together. In the October time

period, the static and advected methods show a similar pattern as in the absolute

comparisons (rising RMS values reaching a peak around 4-5 days, then falling and

rising again). In this case, the static and advected methods stay below the random

comparison. There is no discernable difference between static and advected methods

in this time period.

1. Comparison of OMA and Totals Advected Methods

If the advected method offered improvements over the other comparison meth-

ods, then it is expected that the present SST field could be predicted by a past SST

field when advection of surface water is taken into account. This, of course, will

only work when accurate surface current and particle trajectories are available. As a

measure of performance of the two different surface current measurements, OMA and

Totals Currents, the advected SST comparisons using both OMA and Totals trajec-

tories are plotted together for the two case studies in Figures 31 to 34. These figures

are the same statistics for the advected method presented in Figures 23 to 30. They

are extracted and presented on the same figures to ease comparison. Both OMA and

Totals currents give rise to similar performance of the advected method for all case

studies.
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Figure 31. RMS of the difference of SST points using advected comparisons for both
OMA and Totals trajectories. Absolute SST is compared for the January, 2007 case
study.
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Figure 32. RMS of the difference of SST points using advected comparisons for both
OMA and Totals trajectories. SST anomaly is compared for the January, 2007 case
study.
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Figure 33. RMS of the difference of SST points using advected comparisons for both
OMA and Totals trajectories. Absolute SST is compared for the October, 2006 case
study.
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Figure 34. RMS of the difference of SST points using advected comparisons for both
OMA and Totals trajectories. SST anomaly is compared for the October, 2006 case
study.
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2. Calculations on the Distance of Advected Particles

In the advected comparison method, calculations were also completed on the

distance individual particles were advected. Individual particle displacement dis-

tances were combined into a RMS of advected displacement statistic. These statistics

are plotted in Figure 35. Predictably, as time increases, particles are advected further

from their starting position, on average.

C. RECONSTRUCTION OF SST FIELD

If the advected model is a good prediction of future SST, then some method

is needed to reconstruct the full SST field from the (relatively) few points that are

advected from one image to another. Numerous interpolations methods exist for scat-

tered data interpolation. Figure 36 shows the reconstructed and actual temperature

field for October 25, 2006, 21:36 GMT. The reconstructed field is generated using the

SST points advected (with Totals currents) from October 17, 2006, 21:18 GMT to

October 25, 2006, 21:36 GMT. The reconstruction is accomplished using MATLAB’s

‘griddata’ function, which utilizes triangle based linear interpolation.

The reconstructed field and the actual SST field are significantly different. Ma-

jor features of the actual field (Figure 36d), such as the cold-water plume off Pescadero

and Half Moon Bay in the center of the image are absent in the reconstructed image.

The reconstructed image might be showing some promise in that locations of SST

features such as fronts (areas of high gradient) appear to be in the correct locations,

but overall the reconstruction is of low quality. A better approximation would be

Figure 36c, which is just the past SST field with no advection information.

An alternative method of reconstructing the SST field is to identify points

where the SST is needed, and the find the backwards trajectory from that point to a

point in a previous image where SST is available. This can be done using the same

current information necessary to compute forward trajectories.
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Figure 35. Displacement of advected particles. Particles from both case study periods
are shown in each plot. (a) Displacement of particles using OMA currents. (b)
Displacement of particles using Totals currents.
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(a) (b)

(c) (d)

Figure 36. (a) Predicted SST field for 21:36 GMT, October 25, 2006, based on par-
ticles advected from 21:18 GMT, October 17, 2006. (b) Reconstructed temperature
field based on advected points in panel (a). (c) Actual SST field for 21:18 GMT,
October 17, 2006 as measured by satellite. (d) Actual SST field for 21:36 GMT,
October 25, 2006, as measured by NOAA satellite.

62



D. RECOMMENDATIONS FOR FURTHER STUDY
1. Refinement of Advection Model

It is seen that the advection SST model proposed is not an adequate predictor

of the present or future SST field. It appears that the static model, where the SST at

a point is simply modeled by a SST measurement at that same point in the past, does

just as well at predicting a future SST value. The static model does not utilize any

information about the surface current field. The advected model, in contrast, contains

no information on the past SST at that location. Perhaps a model which includes

information on both the advected SST and static SST would perform well. This is a

regression model question. What is the ideal (if any) combination of advected and

static SST to be used in predicting future SST?

2. Frontal Advection

Another proposed advection model concentrates the predictions in areas of

interest. It is often the case that researchers are more interested in certain features

of the SST field than others. These features are typically areas of high temperature

gradients, called fronts. Instead of predicting a SST field based on the advected

locations of a grid of points spread over the entire domain, the field could be predicted

by the advected locations of a set of points that define the feature of interest. The

advected locations of the features can be used as control points and the entire image

registered based on these control points.

3. Lagrangian Coherent Structures

The method of calculating particle trajectories by integrating the surface ve-

locity can lead to significant errors in the trajectories for small changes in the velocity

field, such as those added by measurement error. Studies are underway which seek to

calculate the locations of more robust structures in the surface velocity field which are

less sensitive to errors in individual current measurements. Some of these structures,

called Lagrangian Coherent Structures (LCS), form natural barriers to fluid transport

and act as separators of areas of different dynamics. These LCS can be calculated
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from the Finite-Time Lyapunov Exponent (FTLE), discussed in [12]. Figure 37 is an

example of FTLE and LCS caculations from HF radar current data in the Monterey

Bay. Note the LCS running north-south across the mouth of Monterey Bay divides

the flow within the bay from the flow which remains outside the bay. LCS can be

utilized in SST prediction by helping to guide calculated trajectories, reducing the

impact of measurement errors on the overall particle trajectories.

4. Adaptive Interpolation Functions for Scattered Data
Interpolation

A different proposed model is related to scattered data interpolation. Instead

of modeling a present (but incomplete) SST field by a past field, the present incom-

plete field might be filled in by interpolation of the measurements that exist in the

Figure 37. FTLE field computed from HF radar velocity data. Curves of high FTLE
represent time-varying LCS. Also shown is HF radar velocity field at the given time.
From [12].

64



present field. Existing interpolation methods might interpolate a value based on a

weighting function applied to surrounding measurements. One weighting function

is the Gaussian weighting function, which weighs surrounding measurements equally

based on the negative exponential of the squared the distance to the measurement.

The Gaussian function is shown in Figure 38.

Continuing on the logic that the surface current field contains information

which is relevant to the surface SST field, the interpolation weighting function might

be modified based on existing current measurements. For example, the weighting

function can be adaptively stretched to weigh measurements which lie along local

current vectors more than measurements which lie perpendicular to the local current

vectors. This interpolation function can be changed for each location on the map

based on local current information. Figure 39 shows a interpolation weighting function

based on the Gaussian function which has been compacted in the x direction.
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Figure 38. Gaussian weighting function.
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Figure 39. Gaussian weighting function, slimmed in the x direction.

5. Improvements to Current Fits from OMA Method

Additional work remains on the OMA method. Improvements can be made

to fitting OMA modes to existing current measurements. In this investigation, the

only measurements used to fit OMA modes originate from the CODAR HF radars.

Other current measurements exist which can be used to fit OMA modes, although

care should be taken to ensure that the ocean depth at which currents are measured

are compatible across different measurement instruments. For example, current in-

struments on moored ocean buoys can be used in OMA fits, as well as currents from

tidal gauges. Currents near land are hard for the HF radars to measure, but can play

a large part in current circulation patterns, especially in bays and other inlets.
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APPENDIX.

Data from the satellite passes in Tables III and IV were used in this thesis.

Date Time(GMT) Satellite
09 19:10:00 NOAA17
12 18:01:00 NOAA17
12 21:28:00 NOAA18
13 19:18:00 NOAA17
14 06:37:00 NOAA17
14 18:55:00 NOAA17
14 21:08:00 NOAA18
15 18:32:00 NOAA17
15 20:57:00 NOAA18
17 19:26:00 NOAA17
17 20:36:00 NOAA18
21 10:11:00 NOAA18
21 19:34:00 NOAA17
22 19:11:00 NOAA17
22 21:26:00 NOAA18
23 18:48:00 NOAA17
23 21:15:00 NOAA18
24 18:25:00 NOAA17
24 21:05:00 NOAA18

Table III. Satellite Images used in the January, 2007 Case Study
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Date Time(GMT) Satellite
17 21:18:00 NOAA18
18 19:21:00 NOAA17
18 21:08:00 NOAA18
19 18:58:00 NOAA17
19 20:57:00 NOAA18
21 18:12:00 NOAA17
21 20:37:00 NOAA18
25 21:36:00 NOAA18
26 19:37:00 NOAA17
26 21:26:00 NOAA18
27 21:16:00 NOAA18

Table IV. Satellite Images used in the October, 2006 Case Study
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